試卷征集
加入會員
操作視頻

等面積法是一種常用的、重要的數(shù)學(xué)解題方法.它是利用“同一個(gè)圖形的面積相等”、“分割圖形后各部分的面積之和等于原圖形的面積”、“同底等高或等底同高的兩個(gè)三角形面積相等”等性質(zhì)解決有關(guān)數(shù)學(xué)問題,在解題中,靈活運(yùn)用等面積法解決相關(guān)問題,可以使解題思路清晰,解題過程簡便快捷.
(1)在直角三角形中,兩直角邊長分別為3和4,則該直角三角形斜邊上的高的長為
12
5
12
5
,其內(nèi)切圓的半徑長為
1
1

(2)①如圖1,P是邊長為a的正△ABC內(nèi)任意一點(diǎn),點(diǎn)O為△ABC的中心,設(shè)點(diǎn)P到△ABC各邊距離分別為h1,h2,h3,連接AP,BP,CP,由等面積法,易知
1
2
a(h1+h2+h3)=S△ABC=3S△OAB,可得h1+h2+h3=
3
2
a
3
2
a
;(結(jié)果用含a的式子表示)

②如圖2,P是邊長為a的正五邊形ABCDE內(nèi)任意一點(diǎn),設(shè)點(diǎn)P到五邊形ABCDE各邊距離分別為h1,h2,h3,h4,h5,參照①的探索過程,試用含a的式子表示h1+h2+h3+h4+h5的值.(參考數(shù)據(jù):tan36°≈
8
11
,tan54°≈
11
8

(3)①如圖3,已知⊙O的半徑為2,點(diǎn)A為⊙O外一點(diǎn),OA=4,AB切⊙O于點(diǎn)B,弦BC∥OA,連接AC,則圖中陰影部分的面積為
2
π
3
2
π
3
;(結(jié)果保留π)
②如圖4,現(xiàn)有六邊形花壇ABCDEF,由于修路等原因需將花壇進(jìn)行改造,若要將花壇形狀改造成五邊形ABCDG,其中點(diǎn)G在AF的延長線上,且要保證改造前后花壇的面積不變,試確定點(diǎn)G的位置,并說明理由

【考點(diǎn)】圓的綜合題
【答案】
12
5
;1;
3
2
a
;
2
π
3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:739引用:2難度:0.1
相似題
  • 1.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
    (1)求證:BE是圓O的切線;
    (2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
    (3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.

    發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1
  • 2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
    (1)求證:直線CE是圓O的切線.
    (2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
    (3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長.

    發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1
  • 3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
    (1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
    (2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請?jiān)趥溆脠D中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.

    發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正