根據(jù)分類變量x與y的觀察數(shù)據(jù),計算得到K2=2.9474,依據(jù)下面給出的臨界值表,
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【考點】獨立性檢驗.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:133引用:4難度:0.7
相似題
-
1.“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念已經(jīng)深入人心,這將推動新能源汽車產(chǎn)業(yè)的迅速發(fā)展.如表是近幾年我國某地區(qū)新能源乘用車的年銷售量與年份的統(tǒng)計表:
年份 2016 2017 2018 2019 2020 銷售量/萬臺 8 10 13 25 24 車主性別 購車種類情況 合計 購置傳統(tǒng)燃油車 購置新能源車 男性車主 6 24 女性車主 2 合計 30
(2)請將上述2×2列聯(lián)表補充完整,并依據(jù)小概率值α=0.10的獨立性檢驗,能否判斷購車車主是否購置新能源乘用車與性別有關?
(3)若以這30名購車車主中購置新能源乘用車的車主性別比例作為該地區(qū)購置新能源乘用車的車主性別比例,從該地區(qū)購置新能源乘用車的車主中隨機選取50人,記選到女性車主的人數(shù)為X,求X的均值與方差.
參考公式:r=,χ2=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2,其中n=a+b+c+d.n(ad-bc)2(a+b)(c+d)(a+c)(b+d)≈25,若r>0.9,則可判斷y與x線性相關.635
附表:α 0.10 0.05 0.025 0.010 0.001 xα 2.706 3.841 5.024 6.635 10.828 發(fā)布:2024/12/10 8:0:1組卷:9引用:0難度:0.6 -
2.近幾年我國新能源汽車產(chǎn)業(yè)發(fā)展迅速.下表是某省新能源汽車的年銷售量與年份的統(tǒng)計表:
年份 2017 2018 2019 2020 2021 年銷售量(萬臺) 12 25 23 20 40 購置傳統(tǒng)燃油汽車 購置新能源汽車 總計 男性車主 15 75 女性車主 15 總計 100
(2)請將上述2×2列聯(lián)表補充完整,并根據(jù)小概率值α=0.05的χ2獨立性檢驗,判斷購車車主購置新能源汽車是否與性別有關.
參考公式:相關系數(shù),r=n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2
卡方統(tǒng)計量,其中n=a+b+c+d.χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)
參考數(shù)據(jù):,若|r|>0.75,則可判斷y與x相關程度很強.4180≈64.65
附表:α 0.15 0.10 0.05 0.025 0.010 0.005 xα 2.072 2.706 3.841 5.024 6.635 7.879 發(fā)布:2024/12/10 8:0:1組卷:37引用:3難度:0.6 -
3.某高中調(diào)查學生對2022年冬奧會的關注是否與性別有關,隨機抽樣調(diào)查150人,進行獨立性檢驗,經(jīng)計算得
,臨界值如右表,則下列說法中正確的是( )χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)≈5.879α 0.15 0.10 0.05 0.025 0.010 χα 2.072 2.076 3.841 5.024 6.635 發(fā)布:2024/12/6 17:0:1組卷:316引用:2難度:0.9
把好題分享給你的好友吧~~