試卷征集
加入會員
操作視頻

某闖關(guān)游戲由兩道關(guān)卡組成,現(xiàn)有n名選手依次闖關(guān),每位選手成功闖過第一關(guān)和第二關(guān)的概率均為
1
2
,兩道關(guān)卡能否過關(guān)相互獨立,每位選手的闖關(guān)過程相互獨立,具體規(guī)則如下:
①每位選手先闖第一關(guān),第一關(guān)闖關(guān)成功才有機(jī)會闖第二關(guān).
②闖關(guān)選手依次挑戰(zhàn).第一位闖關(guān)選手開始第一輪挑戰(zhàn).若第i(i=1,2,3,?,n-1)位選手在10分鐘內(nèi)未闖過第一關(guān),則認(rèn)為第i輪闖關(guān)失敗,由第i+1位選手繼續(xù)挑戰(zhàn).
③若第i(i=1,2,3,?,n-1)位選手在10分鐘內(nèi)闖過第一關(guān),則該選手可繼續(xù)闖第二關(guān).若該選手在10分鐘內(nèi)未闖過第二關(guān),則也認(rèn)為第i輪闖關(guān)失敗,由第i+1位選手繼續(xù)挑戰(zhàn).
④闖關(guān)進(jìn)行到第n輪,則不管第n位選手闖過第幾關(guān),下一輪都不再安排選手闖關(guān).
令隨機(jī)變量Xn表示n名挑戰(zhàn)者在第Xn(Xn=1,2,3,?,n)輪結(jié)束闖關(guān).
(1)求隨機(jī)變量X4的分布列;
(2)若把闖關(guān)規(guī)則①去掉,換成規(guī)則⑤:闖關(guān)的選手先闖第一關(guān),若有選手在10分鐘內(nèi)闖過第一關(guān),以后闖關(guān)的選手不再闖第一關(guān),直接從第二關(guān)開始闖關(guān).
令隨機(jī)變量Yn表示n名挑戰(zhàn)者在第Yn(Yn=1,2,3,?,n)輪結(jié)束闖關(guān).
(?。┣箅S機(jī)變量
Y
n
i
N
*
,
n
?
2
的分布列
(ⅱ)證明E(Y2)<E(Y3)<E(Y4)<E(Y5)<?<E(Yn)<?<3.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/1 8:0:9組卷:67引用:4難度:0.5
相似題
  • 菁優(yōu)網(wǎng)1.每年5月17日為國際電信日,某市電信公司每年在電信日當(dāng)天對辦理應(yīng)用套餐的客戶進(jìn)行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當(dāng)天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.
    (1)求某兩人選擇同一套餐的概率;
    (2)若用隨機(jī)變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學(xué)期望.

    發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1
  • 2.某工廠有甲、乙、丙三條生產(chǎn)線同時生產(chǎn)同一產(chǎn)品,這三條生產(chǎn)線生產(chǎn)產(chǎn)品的次品率分別為6%,5%,4%,假設(shè)這三條生產(chǎn)線產(chǎn)品產(chǎn)量的比為5:7:8,現(xiàn)從這三條生產(chǎn)線上共任意選取100件產(chǎn)品,則次品數(shù)的數(shù)學(xué)期望為

    發(fā)布:2024/12/15 19:0:2組卷:104引用:2難度:0.6
  • 3.隨機(jī)變量X的分布列如表所示,若
    E
    X
    =
    1
    3
    ,則D(3X-2)=

    X -1 0 1
    P
    1
    6
    a b

    發(fā)布:2024/12/18 18:30:1組卷:211引用:9難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正