已知函數f(x)=x+(1-a)lnx+ax(a∈R).
(1)討論函數f(x)的單調性;
(2)當a>0時,若f(x)≥2恒成立,求實數a的取值范圍.
a
x
【考點】利用導數研究函數的最值;利用導數研究函數的單調性.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:194難度:0.4
相似題
-
1.函數f(x)是定義在(0,+∞)上的可導函數,其導函數為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數a的取值范圍是( ?。?/h2>ax?f(ax)lnx≥f(lnx)?lnxaxA. (0,1e]B. [1e,+∞)C.(0,e] D. (1e,+∞)發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
2.已知函數
,當x∈(0,+∞)時,f(x)≥0恒成立,則實數a的取值范圍是( ?。?/h2>f(x)=e2x-2lnx+ax+1x2A.(-∞,1] B.(-∞,e2-1] C.(-∞,e] D.(-∞,2] 發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0A.[ ,e2]12eB.[ ,e2]1e2C.[ ,e4]1e2D.[ ,e4]1e發(fā)布:2024/12/20 6:0:1組卷:262難度:0.4
把好題分享給你的好友吧~~