在平面直角坐標(biāo)系xOy中,已知拋物線L:y=x2-2x+2-m和線段AB,其中點(diǎn)A(0,3),點(diǎn)B(4,7),點(diǎn)C是拋物線L與y軸的交點(diǎn),點(diǎn)D是拋物線L的頂點(diǎn).
(1)求直線AB的解析式;
(2)點(diǎn)Q在拋物線L上,且與點(diǎn)C關(guān)于對稱軸對稱,連接CD,DQ,CQ,求證:△CDQ為等腰直角三角形;
(3)在(2)的條件下,射線DQ交x軸于點(diǎn)F,連接DA,BF,四邊形ABFD是否能構(gòu)成平行四邊形?如果能,請求m的值;如果不能,說明理由;
(4)若拋物線L與線段AB只有一個交點(diǎn),結(jié)合函數(shù)圖象,直接寫出m的取值范圍為 -1<m≤3或m=-134-1<m≤3或m=-134.
13
4
13
4
【考點(diǎn)】二次函數(shù)綜合題.
【答案】-1<m≤3或m=-
13
4
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/10 20:0:2組卷:316引用:2難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx-2與x軸的兩個交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線的解析式;
(2)在直線AC上方的該拋物線上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請說明理由;
(3)設(shè)拋物線的頂點(diǎn)是F,對稱軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線上一動點(diǎn),過P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問:
①m取何值時,過點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請求出此時m的值;若不可能,請說明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3640引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2664引用:7難度:0.7