定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿(mǎn)足f(x0)=f(b)-f(a)b-a,則稱(chēng)函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的均值點(diǎn).
(1)y=x4是否是[-1,1]上的“平均值函數(shù)”,如果是請(qǐng)找出它的均值點(diǎn);如果不是,請(qǐng)說(shuō)明理由;
(2)現(xiàn)有函數(shù)y=-2x2+2mx+1是[-1,1]上的平均值函數(shù),則求實(shí)數(shù)m的取值范圍.
f
(
x
0
)
=
f
(
b
)
-
f
(
a
)
b
-
a
【考點(diǎn)】函數(shù)解析式的求解及常用方法.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:119引用:2難度:0.7
相似題
-
1.已知函數(shù)f(x)的圖象如圖所示,則該函數(shù)的解析式為( )
發(fā)布:2024/12/2 8:0:27組卷:99引用:5難度:0.7 -
2.為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒,已知藥物釋放過(guò)程中,室內(nèi)每立方米空氣中含藥量y(毫克)與時(shí)間t(小時(shí))成正比.已知6分鐘后藥物釋放完畢,藥物釋放完畢后,y與t的函數(shù)關(guān)系是為y=(
)116,如圖所示,根據(jù)圖中提供的信息,回答下列問(wèn)題:t-110
(1)求從藥物釋放開(kāi)始,每立方米空氣中的含藥量y(毫克)與時(shí)間t(小時(shí))之間的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到0.125毫克以下時(shí),學(xué)生方可進(jìn)教室,那么從藥物釋放開(kāi)始,至少需要經(jīng)過(guò)多少分鐘后,學(xué)生才能回到教室?發(fā)布:2024/12/3 8:0:1組卷:51引用:1難度:0.5 -
3.已知f(x+1)=2x+1,則f(2)=( )
發(fā)布:2024/12/21 4:30:3組卷:50引用:2難度:0.8