雙曲線x2a2-4y2a2=λ(λa≠0)的漸近線方程為( ?。?/h1>
x
2
a
2
-
4
y
2
a
2
y =± 1 2 x | y =± 2 x |
【考點】求雙曲線的漸近線方程.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:74引用:2難度:0.7
相似題
-
1.已知雙曲線
與C1:x2+y2m=1(m≠0)共焦點,則C1的漸近線方程為( ?。?/h2>C2:x22-y22=1A.x±y=0 B. 2x±y=0C. x±3y=0D. 3x±y=0發(fā)布:2024/12/29 9:30:1組卷:76引用:2難度:0.8 -
2.已知拋物線y2=20x的焦點與雙曲線
的一個焦點重合,且拋物線的準線被雙曲線截得的線段長為x2a2-y2b2=1(a>0,b>0),該雙曲線的漸近線方程為( )92A. y=±34xB. y=±43xC. y=±45xD. y=±54x發(fā)布:2024/12/8 20:0:1組卷:42引用:2難度:0.6 -
3.雙曲線
的漸近線方程為( ?。?/h2>x22-y28=1A. y=±x2B.y=±2x C. y=±x4D.y=±4x 發(fā)布:2024/12/31 22:0:3組卷:48引用:2難度:0.7
把好題分享給你的好友吧~~