試卷征集
加入會(huì)員
操作視頻

九年級(jí)一班同學(xué)在數(shù)學(xué)老師的指導(dǎo)下,以“等腰三角形的旋轉(zhuǎn)”為主題,開展數(shù)學(xué)探究活動(dòng).
操作探究:
(1)如圖1,△OAB為等腰三角形,OA=OB,∠AOB=60°,將△OAB繞點(diǎn)O旋轉(zhuǎn)180°,得到△ODE,連接AE,F(xiàn)是AE的中點(diǎn),連接OF,則∠BAE=
90
90
°,OF與DE的數(shù)量關(guān)系是
DE=2OF
DE=2OF
;
遷移探究:
(2)如圖2,(1)中的其他條件不變,當(dāng)△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),點(diǎn)D正好落在∠AOB的角平分線上,得到△ODE,求出此時(shí)∠BAE的度數(shù)及OF與DE的數(shù)量關(guān)系;
拓展應(yīng)用:
(3)如圖3,在等腰三角形OAB中,OA=OB=4,∠AOB=90°.將△OAB繞點(diǎn)O旋轉(zhuǎn),得到△ODE,連接AE,F(xiàn)是AE的中點(diǎn),連接OF.當(dāng)∠EAB=15°時(shí),請(qǐng)直接寫出OF的長(zhǎng).
菁優(yōu)網(wǎng)

【考點(diǎn)】幾何變換綜合題
【答案】90;DE=2OF
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1085引用:16難度:0.3
相似題
  • 1.已知正方形ABCD和△ABE(點(diǎn)C,D,E在直線AB同側(cè)),把△ABE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°,得到△ADF,由旋轉(zhuǎn)的性質(zhì),可知△ADF≌△ABE,延長(zhǎng)BE交DF于點(diǎn)G.
    (1)如圖1,若點(diǎn)E在正方形ABCD邊AD上(∠BAE=90°),則BE與DF的位置關(guān)系是

    (2)如圖2,若點(diǎn)E在正方形ABCD內(nèi)部(∠BAE<90°,∠BEA<90°).
    ①(1)的結(jié)論還成立嗎?若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說明理由.
    ②若BG=6,DG=2,請(qǐng)直接寫出線段AG的長(zhǎng).
    菁優(yōu)網(wǎng)?

    發(fā)布:2024/11/4 8:0:2組卷:63引用:1難度:0.5
  • 2.閱讀下面材料:
    小明遇到這樣一個(gè)問題:
    如圖1,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△DBE,DE的延長(zhǎng)線與AC相交于點(diǎn)F,連接DA、BF,BF=AF.
    求證:DF=2AF.
    小明通過探究,為同學(xué)們提供了解題的想法:
    如圖2,在DF上截取DG=AF,連接BG.由旋轉(zhuǎn)性質(zhì)可知,DB=AB,∠BDG=∠BAF.由此可證△DBG≌△ABF,再證△BGF為等邊三角形,從而使問題得到解決.
    (1)請(qǐng)按照小明的思路,完成解題過程.
    參考小明思考問題的方法,解決下列問題
    (2)如圖3,等邊△ABC中,點(diǎn)P是BC延長(zhǎng)線上一點(diǎn),把PC繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)120°,得線段PQ,點(diǎn)O是線段BQ的中點(diǎn),連接AP,PO.
    ①填空:線段AP,PO的數(shù)量關(guān)系是

    ②證明你的結(jié)論.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/4 8:0:2組卷:213引用:0難度:0.1
  • 3.【閱讀材料】
    (1)小明遇到這樣一個(gè)問題:如圖1,點(diǎn)P在等邊三角形ABC內(nèi),且∠APC=150°,PA=6,PC=8.求PB的長(zhǎng).
    小明發(fā)現(xiàn),把△PAC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°得到△DAB,連接DP,由旋轉(zhuǎn)性質(zhì),可證△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的大小,進(jìn)而可求得PB的長(zhǎng).
    請(qǐng)回答:在圖1中,∠PDB=
    °,PB=

    【問題解決】
    (2)參考小明思考問題的方法,解決下面問題:如圖2,△ABC中,∠ACB=90°,sin∠ABC=
    2
    2
    ,點(diǎn)P在△ABC內(nèi),且PA=2,PB=2
    10
    ,PC=3
    2
    .求AB的長(zhǎng).
    【靈活運(yùn)用】
    (3)如圖3,在△ABC中,tan∠BAC=1,AD⊥BC于點(diǎn)D,若BD=6,CD=4.求△ABC的面積.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/4 8:0:2組卷:720引用:2難度:0.3
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正