下列圖①、②、③中的陰影部分分別是以直角三角形的三邊為邊長(zhǎng)所作的正多邊形;圖④中的陰影部分分別是以直角三角形的三邊為直徑所作的半圓.根據(jù)勾股定理可知:分別以直角三角形的兩條直角邊為邊長(zhǎng)的正方形面積之和等于以斜邊為邊長(zhǎng)的正方形的面積(如圖②)
(1)類似的結(jié)論,對(duì)于圖②的結(jié)論,對(duì)于圖①、③、④是否成立?如果成立,請(qǐng)選擇其中一個(gè)圖形進(jìn)行證明.
(2)根據(jù)(1)的結(jié)論,你能提出一般性的結(jié)論嗎?寫出你的結(jié)論并給予證明.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:167引用:1難度:0.1
相似題
-
1.如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD相交于點(diǎn)O,如果S△AOB=2S△AOD,AC=10,那么OC的長(zhǎng)是.
發(fā)布:2025/1/28 8:0:2組卷:107引用:1難度:0.4 -
2.如圖,梯形ABCD中AD∥BC,對(duì)角線AC、BD交于0點(diǎn),△AOD與△DOC的面積之比為3:7,則AD:BC=
發(fā)布:2025/1/28 8:0:2組卷:39引用:1難度:0.7 -
3.如圖,AB是圓O的直徑,C是半徑OB的中點(diǎn),D是OB延長(zhǎng)線上一點(diǎn),且BD=OB,直線MD與圓O相交于點(diǎn)M、T(不與A、B重合),DN與圓O相切于點(diǎn)N,連接MC,MB,OT.
(Ⅰ)求證:DT?DM=DO?DC;
(Ⅱ)若∠DOT=60°,試求∠BMC的大?。?/h2>發(fā)布:2025/1/28 8:0:2組卷:363引用:1難度:0.3