某公司準(zhǔn)備將100萬元資金投入代理銷售業(yè)務(wù),現(xiàn)有A,B兩個項(xiàng)目可供選擇:
投資A項(xiàng)目一年后獲得的利潤X1(萬元)的概率分布列如下表所示:
X1 | 11 | 12 | 17 |
P | a | 0.4 | b |
投資B項(xiàng)目一年后獲得的利潤X2(萬元)與B項(xiàng)目產(chǎn)品價格的調(diào)整有關(guān),B項(xiàng)目產(chǎn)品價格根據(jù)銷售情況在4月和8月決定是否需要調(diào)整,兩次調(diào)整相互獨(dú)立且在4月和8月進(jìn)行價格調(diào)整的概率分別為p(0<p<1)和1-p.經(jīng)專家測算評估:B項(xiàng)目產(chǎn)品價格一年內(nèi)調(diào)整次數(shù)X(次)與X2的關(guān)系如下表所示:
X(次) | 0 | 1 | 2 |
X2(萬元) | 4.12 | 11.76 | 20.40 |
(2)求X2的分布列;
(3)若E(X1)<E(X2),則選擇投資B項(xiàng)目,求此時p的取值范圍.
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:65引用:6難度:0.5
相似題
-
1.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( )
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7