勾股定理是一個基本的幾何定理,早在我國西漢時期算書《周髀算經(jīng)》就有“勾三股四弦五”的記載.如果一個直角三角形三邊長都是正整數(shù),這樣的直角三角形叫做“整數(shù)直角三角形”;這三個整數(shù)叫做一組“勾股數(shù)”.在一次“構(gòu)造勾股數(shù)”的探究性學習中,老師給出了下表:
m | 2 | 3 | 3 | 4 | … |
n | 1 | 1 | 2 | 3 | … |
a | 22+12 | 32+12 | 32+22 | 42+32 | … |
b | 4 | 6 | 12 | 24 | … |
c | 22-12 | 32-12 | 32-22 | 42-32 | … |
(1)觀察表格,當m=2,n=1時,此時對應(yīng)的a、b、c的值能否為直角三角形三邊的長?說明你的理由.
(2)探究a,b,c與m、n之間的關(guān)系并用含m、n的代數(shù)式表示:a=
m2+n2
m2+n2
,b=2mn
2mn
,c=m2-n2
m2-n2
.(3)以a,b,c為邊長的三角形是否一定為直角三角形?如果是,請說明理由;如果不是,請舉出反例.
【答案】m2+n2;2mn;m2-n2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:207引用:8難度:0.6
相關(guān)試卷