用圓規(guī)畫一個圓O,然后在圓內(nèi)標(biāo)記點(diǎn)A,并把圓周上的點(diǎn)P1折疊到點(diǎn)A,連接OP1,標(biāo)記出OP1與折痕l1的交點(diǎn)M1(如圖),若不斷在圓周上取新的點(diǎn)P2,P3,….進(jìn)行折疊并得到標(biāo)記點(diǎn)M2,M3,….
設(shè)圓O的半徑為4,點(diǎn)A到圓心O的距離為2,所有的點(diǎn)M1,M2,M3,…形成的軌跡記為曲線C.
(1)以O(shè)A所在的直線為x軸,OA的中垂線為y軸建立平面直角坐標(biāo)系,求曲線C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:y=6x+m與曲線C交于E,F(xiàn)兩點(diǎn),且以EF直徑的圓經(jīng)過曲線C的中心,求實數(shù)m的值.
6
【考點(diǎn)】直線與圓錐曲線的綜合;軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:50引用:3難度:0.5
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
2.已知兩個定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9 -
3.若過點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個交點(diǎn),則這樣的直線有( )條.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
把好題分享給你的好友吧~~