試卷征集
加入會(huì)員
操作視頻

以羅爾中值定理、拉格朗日中值定理、柯西中值定理為主體的“中值定理”反映了函數(shù)與導(dǎo)數(shù)之間的重要聯(lián)系,是微積分學(xué)重要的理論基礎(chǔ),其中拉格朗日中值定理是“中值定理”的核心內(nèi)容.該定理如下:若函數(shù)f(x)在閉區(qū)間[a,b]上的圖象不間斷,在開區(qū)間(a,b)內(nèi)可導(dǎo),則在區(qū)間(a,b)內(nèi)至少存在一個(gè)點(diǎn)ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a),ξ稱為函數(shù)y=f(x)在閉區(qū)間[a,b]上的中值點(diǎn).那么函數(shù)f(x)=1-2x3在區(qū)間[-1,1]上的中值點(diǎn)的個(gè)數(shù)為( ?。?/h1>

【答案】C
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:25引用:3難度:0.5
相似題
  • 1.若{x|x2+px+q=0}={1,3},則p+q的值為( ?。?/h2>

    發(fā)布:2024/12/15 2:0:2組卷:16引用:3難度:0.8
  • 2.已知函數(shù)f(x)=(x-1)|x-a|+4有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是

    發(fā)布:2024/12/29 6:30:1組卷:107引用:2難度:0.5
  • 3.已知直線y=-x+2分別與函數(shù)
    y
    =
    1
    2
    e
    x
    和y=ln(2x)的圖象交于點(diǎn)A(x1,y1),B(x2,y2),則( ?。?/h2>

    發(fā)布:2024/12/29 11:0:2組卷:239引用:10難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正