【閱讀探究】如圖1,已知AB∥CD,E、F分別是AB、CD上的點(diǎn),點(diǎn)M在AB、CD兩平行線之間,∠AEM=45°,∠CFM=25°,求∠EMF的度數(shù).
解:過點(diǎn)M作MN∥AB,
∵AB∥CD,
∴MN∥CD.
∴∠EMN=∠AEM=45°,∠FMN=∠CFM=25°.
∴∠EMF=∠EMN+∠FMN=45°+25°=70°.
從上面的推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉(zhuǎn)化”的功能,將∠AEM和∠CFM“湊”在一起,得出角之間的關(guān)系,使問題得以解決.進(jìn)一步研究,我們可以發(fā)現(xiàn)圖1中∠AEM、∠EMF和∠CFM之間存在一定的數(shù)量關(guān)系,請(qǐng)直接寫出它們之間的數(shù)量關(guān)系:∠EMF=∠AEM+∠CFM∠EMF=∠AEM+∠CFM.
【方法運(yùn)用】如圖2,已知AB∥CD,點(diǎn)E、F分別在直線AB、CD上,點(diǎn)M在AB、CD兩平行線之間,求∠AEM、∠EMF和∠CFM之間的數(shù)量關(guān)系.
【應(yīng)用拓展】如圖3,在圖2的條件下,作∠AEM和∠CFM的平分線EP、FP,交于點(diǎn)P(交點(diǎn)P在兩平行線AB、CD之間)若∠EMF=60°,求∠EPF的度數(shù).
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】∠EMF=∠AEM+∠CFM
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:650引用:4難度:0.6
相似題
-
1.錢塘江汛期即將來臨,防汛指揮部在一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖,燈A射線自AM順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線自BP順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是a°/秒,燈B轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿足|a-3b|+(a+b-4)2=0.假定這一帶長江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°.
(1)求a、b的值;
(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?
(3)如圖,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前,若射出的光束交于點(diǎn)C,過C作CD⊥AC交PQ于點(diǎn)D,則在轉(zhuǎn)動(dòng)過程中,∠BAC與∠BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)求出其取值范圍.發(fā)布:2024/12/23 19:30:2組卷:874引用:7難度:0.4 -
2.如圖,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求證:AD平分∠BAC.
發(fā)布:2024/12/23 19:30:2組卷:876引用:15難度:0.3 -
3.如圖,∠ABC+∠ECB=180°,∠P=∠Q.
求證:∠1=∠2.
根據(jù)圖形和已知條件,請(qǐng)補(bǔ)全下面這道題的解答過程.
證明:∵∠ABC+∠ECB=180° ,
∴AB∥ED .
∴∠ABC=∠BCD .
又∵∠P=∠Q(已知),
∴PB∥.
∴∠PBC=.
又∵∠1=∠ABC-,∠2=∠BCD-,
∴∠1=∠2(等量代換).發(fā)布:2024/12/23 20:0:2組卷:963引用:10難度:0.7
把好題分享給你的好友吧~~