【初步探索】
(1)如圖1:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且EF=BE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是:延長FD到點G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ∠BAE+∠FAD=∠EAF∠BAE+∠FAD=∠EAF;
【靈活運用】
(2)如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點,且EF=BE+FD,上述結(jié)論是否仍然成立,并說明理由;
【拓展延伸】
(3)如圖3,已知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點E在CB的延長線上,點F在CD的延長線上,如圖3所示,仍然滿足EF=BE+FD,請寫出∠EAF與∠DAB的數(shù)量關(guān)系,并給出證明過程.
【答案】∠BAE+∠FAD=∠EAF
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/27 8:0:9組卷:4278引用:47難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當(dāng)點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時,DF∥AC;當(dāng)∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1660引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當(dāng)其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當(dāng)t=秒時,PQ平分線段BD;
(2)當(dāng)t=秒時,PQ⊥x軸;
(3)當(dāng)時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1
把好題分享給你的好友吧~~