當(dāng)前位置:
試題詳情
把2019分解成若干個不同的正整數(shù)之和,則至多能分成( )項.
【考點】整數(shù)問題的綜合運用.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:28引用:1難度:0.4
相似題
-
1.甲、乙、丙三人分糖塊,分法如下:先取三張一樣的紙片,在紙片上各寫一個正整數(shù)p、q、r,使p<q<r,分糖時,每人抽一張紙片(同一輪中抽出的紙片不放回去),然后把紙片上的數(shù)減去p,就是他這一輪分得的糖塊數(shù),經(jīng)過若干輪這樣的分法后,甲共得到20塊糖,乙得到10塊糖,丙得到9塊糖.又知最后一次乙拿到的紙片上寫的數(shù)是r,而丙在各輪中拿到的紙片上寫的數(shù)之和是18,問:p、q、r分別是哪三個正整數(shù)?為什么?
發(fā)布:2024/6/27 10:35:59組卷:42引用:1難度:0.5 -
2.定義:對任意一個兩位數(shù)a,如果a滿足個位數(shù)字與十位數(shù)字互不相同,且都不為零,那么稱這個兩位數(shù)為“迥異數(shù)”,將一個“迥異數(shù)”的個位數(shù)字與十位數(shù)字對調(diào)后得到一個新的兩位數(shù),把這個新兩位數(shù)與原兩位數(shù)的和與11的商記為f(a).例如:a=12,對調(diào)個位數(shù)字與十位數(shù)字得到新兩位數(shù)21,新兩位數(shù)與原兩位數(shù)的和為21+12=33,和與11的商為33÷11=3,所以f(12)=3.根據(jù)以上定義,回答下列問題:
(1)填空:
①下列兩位數(shù):40,42,44中,“迥異數(shù)”為;
②計算:f(23)=;
(2)如果一個“迥異數(shù)”b的十位數(shù)字是k,個位數(shù)字是2(k+1),且f(b)=11,請求出“迥異數(shù)”b.發(fā)布:2024/8/28 13:0:8組卷:473引用:5難度:0.7 -
3.有n個人,已知他們中的任意兩人至多通電話一次,他們中的任意n-2個人之間通電話的次數(shù)相等,都是3k次,其中k是自然數(shù),則n的所有可能值有( ?。?/h2>
發(fā)布:2024/9/11 2:0:8組卷:74引用:1難度:0.3