如圖,在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,極軸所在的直線為x軸,建立極坐標(biāo)系,曲線C1是經(jīng)過極點且圓心在極軸上直徑為2的圓,曲線C2是著名的笛卡爾心形曲線,它的極坐標(biāo)方程為ρ=1-sinθ(θ∈[0,2π)).
(1)求曲線C1的極坐標(biāo)方程,并求曲線C1和曲線C2交點(異于極點)的極徑;
(2)曲線C3的參數(shù)方程為x=tcosπ3 y=tsinπ3
(t為參數(shù)),若曲線C3與曲線C2相交于除極點外的M,N兩點,求線段MN的長度.
x = tcos π 3 |
y = tsin π 3 |
【考點】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/8 8:0:9組卷:160引用:13難度:0.5
相似題
-
1.在平面直角坐標(biāo)系xOy中,已知曲線C1:
(t為參數(shù)),以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2:ρ=2acosθ(a>0).x=t,y=2t2-t+32
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)射線與C1相交于A,B兩點,與C2相交于M點(異于O),若|OM|=|AB|,求a.θ=π3(ρ≥0)發(fā)布:2024/12/29 6:30:1組卷:153引用:8難度:0.7 -
2.直線l:
(t為參數(shù),a≠0),圓C:x=a-2t,y=-1+t(極軸與x軸的非負(fù)半軸重合,且單位長度相同).ρ=22cos(θ+π4)
(1)求圓心C到直線l的距離;
(2)若直線l被圓C截得的弦長為,求a的值.655發(fā)布:2024/12/29 10:0:1組卷:56引用:6難度:0.5 -
3.已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的非負(fù)半軸重合,若曲線C的極坐標(biāo)方程為ρ=6cosθ+2sinθ,直線l的參數(shù)方程為
(t為參數(shù)).x=1-2ty=2+2t
(1)求曲線C的直角坐標(biāo)方程與直線l的普通方程;
(2)設(shè)點Q(1,2),直線l與曲線C交于A,B兩點,求|QA|?|QB|的值.發(fā)布:2024/12/29 5:30:3組卷:350引用:9難度:0.3
把好題分享給你的好友吧~~