(1)設a1,a2,…,an是各項均不為零的n(n≥4)項等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當n=4時,求a1d的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對于給定的正整數(shù)n(n≥4),存在一個各項及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(按原來的順序)都不能組成等比數(shù)列.
a
1
d
【考點】等差數(shù)列的性質;等比數(shù)列的性質.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:473引用:4難度:0.5
相似題
-
1.已知數(shù)列{an}是等差數(shù)列,若它的前n項和Sn有最小值,且
<-1,則使Sn>0成立的最小自然數(shù)n的值為.a11a10發(fā)布:2025/1/14 8:0:1組卷:28引用:2難度:0.7 -
2.設等差數(shù)列{an}的前n項和為Sn,已知S10=100,則a2+a9=( ?。?/h2>
發(fā)布:2024/12/29 6:30:1組卷:90引用:9難度:0.9 -
3.若一個等差數(shù)列前3項的和為34,最后3項的和為146,且所有項的和為390,則這個數(shù)列有( )
發(fā)布:2024/12/29 5:0:1組卷:971引用:39難度:0.9