試卷征集
加入會員
操作視頻

中國古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個正方體內(nèi)兩個互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長寬高皆為八分之一正方體的棱長的倒四棱錐“等冪等積”,計算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( ?。?br />菁優(yōu)網(wǎng)

【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:152引用:4難度:0.7
相似題
  • 菁優(yōu)網(wǎng)1.如圖,在幾何體ANB1BCC1中,四邊形ABB1N為梯形,四邊形BCC1B1為矩形,平面BCC1B1⊥平面ABB1N,AN∥BB1,AB⊥AN,BB1=2AB=2AN=8.
    (1)求證:平面BNC⊥平面B1NC1;
    (2)求三棱錐A-BCN與四棱錐N-BCC1B1的體積的比值.

    發(fā)布:2025/1/2 8:0:1組卷:36引用:3難度:0.5
  • 菁優(yōu)網(wǎng)2.如圖,空間幾何體ADE-BCF中,四邊形ABCD是梯形,四邊形CDEF
    是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是線段AE上的動點.
    (1)求證:AE⊥CD;
    (2)試確定點M的位置,使AC∥平面MDF,并說明理由;
    (3)在(2)的條件下,求空間幾何體ADM-BCF的體積.

    發(fā)布:2025/1/2 8:0:1組卷:298引用:5難度:0.3
  • 菁優(yōu)網(wǎng)3.如圖,在空間幾何體ABCDFE中,四邊形ABCD為直角梯形,四邊形ABEF為矩形,AB=AD=2,AF=BC=1,BC∥AD,AB⊥AD,BC⊥BE,
    AM
    =3
    MB

    (1)證明:CF⊥ME;
    (2)求三棱錐C-DEF的體積.

    發(fā)布:2025/1/2 8:0:1組卷:71引用:1難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正