試卷征集
加入會(huì)員
操作視頻

橢圓x2+4y2=68上有兩點(diǎn)A(8,yA)和T(xT,-4),yA>0,xT<0.點(diǎn)A關(guān)于橢圓中心O的對(duì)稱點(diǎn)為點(diǎn)B,點(diǎn)P(t,-2t)在橢圓內(nèi)部,t≠0.F1是橢圓的左焦點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn).
(1)若點(diǎn)P在直線AT上,求點(diǎn)P坐標(biāo);
(2)是否存在一個(gè)點(diǎn)P,滿足
|
P
F
2
|
-
|
P
F
1
|
=
2
3
,若滿足求出點(diǎn)P坐標(biāo),若不存在請(qǐng)說明理由;
(3)設(shè)△AOP的面積為S1,△BTP的面積為S2,求
S
1
S
2
的取值范圍.

【考點(diǎn)】橢圓與平面向量
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:191引用:2難度:0.3
相似題
  • 1.橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1的直線l交橢圓C于A,B兩點(diǎn),若|F1F2|=|AF2|,
    A
    F
    1
    =2
    F
    1
    B
    ,則橢圓C的離心率為( ?。?/h2>

    發(fā)布:2024/12/6 18:30:2組卷:751引用:6難度:0.6
  • 菁優(yōu)網(wǎng)2.在直角坐標(biāo)系xOy中,已知橢圓
    C
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    的右焦點(diǎn)為F(1,0),過點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),|AB|的最小值為
    2

    (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
    (Ⅱ)若與A,B不共線的點(diǎn)P滿足
    OP
    =
    λ
    OA
    +
    2
    -
    λ
    OB
    ,求△PAB面積的取值范圍.

    發(fā)布:2024/12/29 13:30:1組卷:105引用:3難度:0.4
  • 3.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,經(jīng)過F1的直線交橢圓于A,B,△ABF2的內(nèi)切圓的圓心為I,若3
    IB
    +4
    IA
    +5
    I
    F
    2
    =
    0
    ,則該橢圓的離心率是(  )

    發(fā)布:2024/11/28 2:30:1組卷:1165引用:12難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正