已知橢圓C1:x2a2+y2b2=1(a>b>0)經(jīng)過(guò)點(diǎn)P(1,154),且離心率為14,拋物線C2:y2=2px的焦點(diǎn)F與C1的右焦點(diǎn)重合.
(1)求C1與C2的標(biāo)準(zhǔn)方程;
(2)過(guò)C1的右頂點(diǎn)的直線與C2交于A,B兩點(diǎn),線段AB的中點(diǎn)為E,點(diǎn)O為坐標(biāo)原點(diǎn),證明:|OE|=12|AB|.
x
2
a
2
+
y
2
b
2
P
(
1
,
15
4
)
1
4
1
2
【考點(diǎn)】橢圓的中點(diǎn)弦.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/25 8:0:9組卷:40引用:2難度:0.6
相似題
-
1.已知橢圓C:
內(nèi)一點(diǎn)x24+y22=1,直線l與橢圓C交于A,B兩點(diǎn),且M是線段AB的中點(diǎn),則下列結(jié)論正確的是( )M(1,12)發(fā)布:2024/11/24 8:0:2組卷:68引用:2難度:0.4 -
2.設(shè)橢圓
的右焦點(diǎn)為F(c,0),點(diǎn)A(3c,0)在橢圓外,P,Q在橢圓上,且P是線段AQ的中點(diǎn).若直線PQ,PF的斜率之積為Γ:x2a2+y2b2=1(a>b>0),則橢圓的離心率為( )-12發(fā)布:2024/12/15 11:0:1組卷:329引用:2難度:0.6 -
3.已知橢圓C:
的左焦點(diǎn)為F,過(guò)F作一條傾斜角為60°的直線與橢圓C交于A,B兩點(diǎn),M為線段AB的中點(diǎn),若3|FM|=|OF|(O為坐標(biāo)原點(diǎn)),則橢圓C的離心率為( ?。?/h2>x2a2+y2b2=1(a>b>0)發(fā)布:2024/11/21 9:0:4組卷:507引用:3難度:0.5
把好題分享給你的好友吧~~