試卷征集
加入會(huì)員
操作視頻

閱讀材料題:
我們知道a2≥0,所以代數(shù)式a2的最小值為0,學(xué)習(xí)了多項(xiàng)式乘法中的完全平方公式,可以逆用公式,即用a2±2ab+b2=(a±b)2來(lái)求一些多項(xiàng)式的最小值.
例如:求x2+6x+3的最小值問(wèn)題.
解:∵x2+6x+3=x2+6x+9-6=(x+3)2-6,
又∵(x+3)2≥0,
∴(x+3)2-6≥-6,
∴x2+6x+3的最小值為-6.
請(qǐng)應(yīng)用上述思想方法,解決下列問(wèn)題:
(1)探究:x2-4x+6最小值是
2
2
;
(2)代數(shù)式-x2-8x+10有最大值,最大值是多少?

【答案】2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/14 10:0:8組卷:90引用:2難度:0.5
相似題
  • 1.已知代數(shù)式-a2+2a-1,無(wú)論a取任何值,它的值一定是( ?。?/h2>

    發(fā)布:2024/12/12 8:0:1組卷:107引用:3難度:0.7
  • 2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為(  )

    發(fā)布:2024/12/16 14:30:3組卷:101引用:3難度:0.9
  • 3.已知a,b,c滿(mǎn)足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( ?。?/h2>

    發(fā)布:2024/12/23 12:30:2組卷:353引用:9難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正