【閱讀】
數(shù)學(xué)中,常對(duì)同一個(gè)量(圖形的面積、點(diǎn)的個(gè)數(shù)、三角形的內(nèi)角和等)用兩種不同的方法計(jì)算,從而建立相等關(guān)系,我們把這一思想稱為“算兩次”.“算兩次”也稱做富比尼原理,是一種重要的數(shù)學(xué)思想.
【理解】
(1)如圖1,兩個(gè)直角邊長(zhǎng)分別為a、b、斜邊長(zhǎng)為c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)梯形.用兩種不同的方法計(jì)算梯形的面積,并寫出你發(fā)現(xiàn)的結(jié)論;
(2)如圖2,n行n列的棋子排成一個(gè)正方形,用兩種不同的方法計(jì)算棋子的個(gè)數(shù),可得等式:n2=1+3+5+7+…+2n-1.1+3+5+7+…+2n-1.;
【運(yùn)用】
(3)n邊形有n個(gè)頂點(diǎn),在它的內(nèi)部再畫m個(gè)點(diǎn),以(m+n)個(gè)點(diǎn)為頂點(diǎn),把n邊形剪成若干個(gè)三角形,設(shè)最多可以剪得y個(gè)這樣的三角形.當(dāng)n=3,m=3時(shí),如圖3,最多可以剪得7個(gè)這樣的三角形,所以y=7.
①當(dāng)n=4,m=2時(shí),如圖4,y=66;當(dāng)n=5,m=33時(shí),y=9;
②對(duì)于一般的情形,在n邊形內(nèi)畫m個(gè)點(diǎn),通過歸納猜想,可得y=n+2(m-1)n+2(m-1)(用含m、n的代數(shù)式表示).請(qǐng)對(duì)同一個(gè)量用算兩次的方法說明你的猜想成立.
【考點(diǎn)】四邊形綜合題.
【答案】1+3+5+7+…+2n-1.;6;3;n+2(m-1)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/23 16:0:8組卷:1515引用:3難度:0.4
相似題
-
1.如圖,在菱形ABCD中,AB=10,sinB=
,點(diǎn)E從點(diǎn)B出發(fā)沿折線B-C-D向終點(diǎn)D運(yùn)動(dòng).過點(diǎn)E作點(diǎn)E所在的邊(BC或CD)的垂線,交菱形其它的邊于點(diǎn)F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點(diǎn)G在AC上.求證:FA=FG.
(2)若EF=FG,當(dāng)EF過AC中點(diǎn)時(shí),求AG的長(zhǎng).
(3)已知FG=8,設(shè)點(diǎn)E的運(yùn)動(dòng)路程為s.當(dāng)s滿足什么條件時(shí),以G,C,H為頂點(diǎn)的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1986引用:3難度:0.1 -
2.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點(diǎn)A作對(duì)角線BD的平行線與邊CD的延長(zhǎng)線相交于點(diǎn)E.P為邊BD上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長(zhǎng)和面積;
(3)記△ABP的周長(zhǎng)和面積分別為C1和S1,△PDE的周長(zhǎng)和面積分別為C2和S2,在點(diǎn)P的運(yùn)動(dòng)過程中,試探究下列兩個(gè)式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請(qǐng)直接寫出這個(gè)定值;如果不是定值的,請(qǐng)直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
3.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點(diǎn)P是射線BC上一點(diǎn)(不與點(diǎn)B重合),AP與對(duì)角線BD交于點(diǎn)E,連接EC.55
(1)求證:AE=CE;
(2)當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當(dāng)點(diǎn)P在線段BC的延長(zhǎng)線上時(shí),若△PEC是直角三角形,請(qǐng)直接寫出BP的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1