如圖,已知橢圓C:x2b2+y2a2=1(a>b>0)的左、右焦點分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點E在第一象限,與橢圓C相交于A、B兩點,且F2B=λAF2.
(1)求證:切線l的斜率為定值;
(2)若動點T滿足:ET=μ(EF1+EF2),μ∈(0,12),且ET?OT的最小值為-54,求拋物線P的方程;
(3)當(dāng)λ∈[2,4]時,求橢圓離心率e的取值范圍.
C
:
x
2
b
2
+
y
2
a
2
=
1
(
a
>
b
>
0
)
F
2
B
λ
A
F
2
ET
=
μ
(
E
F
1
+
E
F
2
)
,
μ
∈
(
0
,
1
2
)
ET
?
OT
-
5
4
【考點】直線與圓錐曲線的綜合;橢圓的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:42引用:1難度:0.1
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:66引用:5難度:0.7 -
2.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( )條.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7