設(shè)f(x)=lnx,g(x)=12x|x|.
(1)求g(x)在x=-1處的切線方程;
(2)令F(x)=x?f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求實(shí)數(shù)m的取值范圍.
1
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:314引用:3難度:0.1
相似題
-
1.設(shè)
,則( ?。?/h2>a=12,b=ln32,c=π2sin12發(fā)布:2024/12/20 7:0:1組卷:130引用:3難度:0.6 -
2.已知函數(shù)
,對?x1,f(x)=exx-12ax,當(dāng)x1>x2時,恒有x2∈[12,2],則實(shí)數(shù)a的取值范圍為( ?。?/h2>f(x1)x2>f(x2)x1發(fā)布:2024/12/20 1:30:2組卷:97引用:1難度:0.4 -
3.已知
,則( )a=log40.4,b=log0.40.2,c=0.40.2發(fā)布:2024/12/20 13:30:1組卷:38引用:2難度:0.7
把好題分享給你的好友吧~~