根據(jù)以下素材,探索完成任務(wù).
如何設(shè)計(jì)拱橋景觀燈的懸掛方案?
素材1:圖1中有一座拱橋,圖2是其拋物線(xiàn)形或圓弧形橋拱的示意圖,某時(shí)測(cè)得水面寬20m,拱頂離水面5m.據(jù)調(diào)查,該河段水位在此基礎(chǔ)上再漲1.8m達(dá)到最高.
素材2:為迎佳節(jié),擬在圖1橋洞前面的橋拱上懸掛40cm長(zhǎng)的燈籠,如圖3.為了安全,燈籠底部距離水面不小于1m;為了實(shí)效,相鄰兩盞燈籠懸掛點(diǎn)的水平間距均為1.6m;為了美觀,要求在符合條件處都掛上燈籠,且掛滿(mǎn)后成軸對(duì)稱(chēng)分布.
問(wèn)題解決:
任務(wù)1:確定橋拱形狀是拋物線(xiàn):在圖2中建立合適的直角坐標(biāo)系,求拋物線(xiàn)的函數(shù)表達(dá)式.
任務(wù)2:擬定設(shè)計(jì)方案:在任務(wù)1的基礎(chǔ)上,給出一種符合所有懸掛條件的燈籠數(shù)量,并根據(jù)你所建立的坐標(biāo)系,求出最左邊一盞燈籠懸掛點(diǎn)的橫坐標(biāo).
任務(wù)3:確定橋拱形狀是圓?。涸趫D2中用適當(dāng)方法求圓弧所在圓的半徑長(zhǎng)
任務(wù)4:擬定通行方案:在任務(wù)3的基礎(chǔ)上,該河段水位漲1.8m達(dá)到最高時(shí),有一艘貨船它漏出水面高2.2米,船體寬9米需要從拱橋下通過(guò),給出船航行線(xiàn)路,并判斷是否能順利通行.
?
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/13 14:0:1組卷:228引用:2難度:0.1
相似題
-
1.如圖,已知拋物線(xiàn)y=ax2+bx-2與x軸的兩個(gè)交點(diǎn)是A(4,0),B(1,0),與y軸的交點(diǎn)是C.
(1)求該拋物線(xiàn)的解析式;
(2)在直線(xiàn)AC上方的該拋物線(xiàn)上是否存在一點(diǎn)D,使得△DCA的面積最大?若存在,求出點(diǎn)D的坐標(biāo)及△DCA面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)拋物線(xiàn)的頂點(diǎn)是F,對(duì)稱(chēng)軸與AC的交點(diǎn)是N,P是在AC上方的該拋物線(xiàn)上一動(dòng)點(diǎn),過(guò)P作PM⊥x軸,交AC于M.若P點(diǎn)的橫坐標(biāo)是m.問(wèn):
①m取何值時(shí),過(guò)點(diǎn)P、M、N、F的平面圖形不是梯形?
②四邊形PMNF是否有可能是等腰梯形?若有可能,請(qǐng)求出此時(shí)m的值;若不可能,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/2 8:0:1組卷:82引用:1難度:0.5 -
2.如圖,我們把一個(gè)半圓與拋物線(xiàn)的一部分圍成的封閉圖形稱(chēng)為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線(xiàn)的解析式為y=x2-2x-3,AB為半圓的直徑,則這個(gè)“果圓”被y軸截得的弦CD的長(zhǎng)為.
發(fā)布:2024/12/23 17:30:9組卷:3646引用:37難度:0.4 -
3.如圖,將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C在x軸上,點(diǎn)D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.若拋物線(xiàn)y=ax2-45ax+10(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,則a的取值范圍是( )5發(fā)布:2024/12/26 1:30:3組卷:2665引用:7難度:0.7