已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.則圓C的方程為 (x+1)2+y2=2(x+1)2+y2=2.
【考點(diǎn)】圓的標(biāo)準(zhǔn)方程.
【答案】(x+1)2+y2=2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:884引用:33難度:0.7
相似題
-
1.已知圓A的圓心在曲線y2=-18x上,圓A與y軸相切,又與另一圓(x+2)2+(y-3)2=1相外切,求圓A的方程.
發(fā)布:2024/12/29 10:30:1組卷:15引用:2難度:0.5 -
2.設(shè)圓C與雙曲線
的漸近線相切,且圓心是雙曲線的右焦點(diǎn),則圓C的標(biāo)準(zhǔn)方程是.x29-y216=1發(fā)布:2024/12/29 10:0:1組卷:54引用:8難度:0.7 -
3.過點(diǎn)A(0,0),B(2,2)且圓心在直線y=2x-4上的圓的標(biāo)準(zhǔn)方程為( ?。?/h2>
發(fā)布:2024/12/6 9:0:1組卷:655引用:7難度:0.8
把好題分享給你的好友吧~~