已知圓O1和圓O2的極坐標方程分別為ρ=2,ρ2-22ρcos(θ-π4)=2.
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過兩圓交點的直線的極坐標方程.
ρ
2
-
2
2
ρcos
(
θ
-
π
4
)
=
2
【考點】簡單曲線的極坐標方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1095引用:27難度:0.5
相似題
-
1.在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C1:ρcosθ=3,曲線C2:ρ=4cosθ(
).0≤θ<π2
(1)求C1與C2交點的極坐標;
(2)設(shè)點Q在C2上,,求動點P的極坐標方程.OQ=23QP發(fā)布:2024/12/29 3:0:1組卷:144引用:5難度:0.3 -
2.極坐標方程ρcosθ=2sin2θ表示的曲線為( ?。?/h2>
發(fā)布:2024/12/29 2:30:1組卷:244引用:6難度:0.7 -
3.已知點的極坐標是
,則它的直角坐標是(3,π4)發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7