如圖,某運動員從A市出發(fā)沿海岸一條筆直公路以每小時15km的速度向東進行長跑訓練,長跑開始時,在A市南偏東方向距A市75km,且與海岸距離為45km的海上B處有一艘劃艇與運動員同時出發(fā),要追上這位運動員.
(1)劃艇至少以多大的速度行駛才能追上這位運動員?
(2)求劃艇以最小速度行駛時的行駛方向與AB所成的角.
(3)若劃艇每小時最快行駛11.25km,劃艇全速行駛,應沿何種路線行駛才能盡快追上這名運動員,最快需多長時間?
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:55引用:5難度:0.2
相似題
-
1.隨著科學技術的發(fā)展,放射性同位素技術已經(jīng)廣泛應用于醫(yī)學、航天等眾多領域,并取得了顯著經(jīng)濟效益.假設某放射性同位素的衰變過程中,其含量P(單位:貝克)與時間t(單位:天)滿足函數(shù)關系P(t)=
,其中P0為t=0時該放射性同位素的含量.已知t=15時,該放射性同位素的瞬時變化率為P02-t30,則該放射性同位素含量為4.5貝克時,衰變所需時間為( ?。?/h2>-32ln210發(fā)布:2024/12/29 13:30:1組卷:145引用:10難度:0.7 -
2.隨著“低碳生活,綠色出行”理念的普及,新能源汽車正逐漸成為福清人喜愛的交通工具.據(jù)預測,福清某新能源汽車4S店從2023年1月份起的前x個月,顧客對比亞迪汽車的總需量R(x)(單位:輛)與x的關系會近似地滿足
(其中x∈N*且x≤6),該款汽車第x月的進貨單價W(x)(單位:元)與x的近似關系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x個月的總需量R(x),求出第x月的需求量g(x)(單位:輛)與x的函數(shù)關系式;
(2)該款汽車每輛的售價為185000元,若不計其他費用,則這個汽車4S店在2023年的第幾個月的月利潤f(x)最大,最大月利潤為多少元?發(fā)布:2024/12/29 11:30:2組卷:16引用:3難度:0.5 -
3.某工廠生產(chǎn)某種零件的固定成本為20000元,每生產(chǎn)一個零件要增加投入100元,已知總收入Q(單位:元)關于產(chǎn)量x(單位:個)滿足函數(shù):Q=
.400x-12x2,0≤x≤40080000,x>400
(1)將利潤P(單位:元)表示為產(chǎn)量x的函數(shù);(總收入=總成本+利潤)
(2)當產(chǎn)量為何值時,零件的單位利潤最大?最大單位利潤是多少元?(單位利潤=利潤÷產(chǎn)量)發(fā)布:2024/12/29 13:0:1組卷:231引用:10難度:0.5
把好題分享給你的好友吧~~