已知fn(x)=(1+x)n,n∈N*.
(1)若g(x)=f4(x)+2f5(x)+3f6(x),求g(x)中含x2項的系數(shù);
(2)若pn是fn(x)展開式中所有無理項的系數(shù)和,數(shù)列{an}是由各項都大于1的數(shù)組成的數(shù)列,試用數(shù)學(xué)歸納法證明:pn(a1a2…an+1)≥(1+a1)(1+a2)…(1+an).
x
【考點】數(shù)學(xué)歸納法;二項式定理.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:128引用:13難度:0.5
相似題
-
1.用數(shù)學(xué)歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項是( )56發(fā)布:2024/12/17 12:30:2組卷:393引用:10難度:0.9 -
2.用數(shù)學(xué)歸納法證明
時,在證明n=1等式成立時,此時等式的左邊是( ?。?/h2>1+a+a2+…+a2(n+1)=1-a2n+31-a(a≠1,n∈N*)發(fā)布:2024/12/29 9:0:1組卷:291引用:3難度:0.8 -
3.已知n為正整數(shù),請用數(shù)學(xué)歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:424引用:1難度:0.7