已知定義在區(qū)間[-1,1]上的函數(shù)f(x)=2x+bx2+1為奇函數(shù).
(1)求實(shí)數(shù)b的值.
(2)判斷函數(shù)f(x)在區(qū)間(-1,1)上的單調(diào)性,并證明你的結(jié)論.
(3)f(x)在x∈[m,n]上的值域?yàn)閇m,n](-1≤m<n≤1),求m+n的值.
f
(
x
)
=
2
x
+
b
x
2
+
1
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;函數(shù)的值域.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:53引用:10難度:0.1
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:232引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
A.(-∞,-1)∪(0,1) B.(-2,-1)∪(1,2) C.(-1,0)∪(1,+∞) D.(-∞,-2)∪(2,+∞) 發(fā)布:2024/12/29 13:0:1組卷:264引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:140引用:2難度:0.2