已知橢圓C:x2a2+y2b2=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率e=22,與雙曲線x2-y2=12有相同的焦點(diǎn).
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)過點(diǎn)F1的直線l與該橢圓C交于M、N兩點(diǎn),且|F2M+F2N|=2263,求直線l的方程.
(Ⅲ)是否存在圓心在原點(diǎn)的圓,使得該圓的任一條切線與橢圓C有兩個(gè)交點(diǎn)A、B,且OA⊥OB?若存在,寫出該圓的方程,否則,說明理由.
x
2
a
2
+
y
2
b
2
=
1
2
2
x
2
-
y
2
=
1
2
F
2
M
F
2
2
26
3
【考點(diǎn)】橢圓的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:261引用:1難度:0.1
相似題
-
1.已知橢圓
=1(a>b>0)的一個(gè)焦點(diǎn)為F(2,0),橢圓上一點(diǎn)P到兩個(gè)焦點(diǎn)的距離之和為6,則該橢圓的方程為( )x2a2+y2b2發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
2.阿基米德(公元前287年-公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,且橢圓C的離心率為
,面積為8π,則橢圓C的方程為( ?。?/h2>32發(fā)布:2024/12/29 12:0:2組卷:227引用:7難度:0.5 -
3.已知橢圓C的兩焦點(diǎn)分別為
、F1(-22,0),長(zhǎng)軸長(zhǎng)為6.F2(22,0)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線的方程.發(fā)布:2024/12/29 11:30:2組卷:430引用:6難度:0.8
把好題分享給你的好友吧~~