學習概念:
規(guī)定①:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為“等角三角形”.
規(guī)定②:從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是“等角三角形”,我們把這條線段叫做這個三角形的“等角分割線”.
理解概念:
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD⊥AB,請根據(jù)規(guī)定①,寫出圖中所有的“等角三角形”;
(2)如圖2,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,請根據(jù)規(guī)定②,求證:CD為△ABC的等角分割線;
應用概念:
(3)在△ABC中,∠A=42°,CD是△ABC的等角分割線,直接寫出∠ACB的度數(shù).
【考點】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:236引用:3難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(當點D落在射線FB上時停止旋轉).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1