在平面直角坐標(biāo)系中,橢圓C:x2a2+y2b2=1(a>b>0)的離心率為33,焦距為2.
(1)求橢圓C的方程.
(2)動(dòng)直線l:y=mx-52交橢圓于A、B兩點(diǎn),D是橢圓C上一點(diǎn),直線OD的斜率為n,且mn=12.T是線段OD延長線上一點(diǎn),且|DT|=22115|AB|,⊙T的半徑為|DT|,OP,OQ是⊙T的兩條切線,切點(diǎn)分別為P,Q,求∠QOP的最大值.
C
:
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
3
3
l
:
y
=
mx
-
5
2
mn
=
1
2
|
DT
|
=
2
21
15
|
AB
|
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:323引用:6難度:0.3
相似題
-
1.已知橢圓E:
的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( ?。?/h2>x2a2+y2b2=1(a>b>0)發(fā)布:2024/12/3 9:0:2組卷:926引用:27難度:0.7 -
2.已知
為橢圓A(-1,233),B(1,-233),P(x0,y0)上不同的三點(diǎn),直線l:x=2,直線PA交l于點(diǎn)M,直線PB交l于點(diǎn)N,若S△PAB=S△PMN,則x0=( ?。?/h2>C:x23+y22=1發(fā)布:2024/12/6 6:0:1組卷:231引用:6難度:0.5 -
3.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:451引用:3難度:0.6
把好題分享給你的好友吧~~