德國數(shù)學家狄利克雷(1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,那么y是x的函數(shù).”這個定義較清楚地說明了函數(shù)的內(nèi)涵.只要有一個法則,使得取值范圍中的每一個x,有一個確定的y和它對應就行了,不管這個法則是用公式還是用圖象、表格等形式表示,例如狄利克雷函數(shù)D(x),即:當自變量取有理數(shù)時,函數(shù)值為1;當自變量取無理數(shù)時,函數(shù)值為0.
以下關于狄利克雷函數(shù)D(x)的性質(zhì):①D(2)=0;②D(x)的值域為{0,1};③D(x)為奇函數(shù);④D(x-1)=D(x),其中表述正確的個數(shù)是( ?。?/h1>
D
(
2
)
=
0
【考點】命題的真假判斷與應用.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:37引用:4難度:0.8
相似題
-
1.德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,是解析數(shù)論的創(chuàng)始人之一,以其名命名的函數(shù) f(x)=
稱為狄利克雷函數(shù),則關于f(x),下列說法正確的是( ?。?/h2>1,x∈Q0,x∈?RQ發(fā)布:2024/12/22 8:0:1組卷:91引用:9難度:0.7 -
2.已知函數(shù)f(x)=
,則關于函數(shù)f(x)有如下說法:1(x為有理數(shù))0(x為無理數(shù))
①f(x)的圖象關于y軸對稱;
②方程f(f(x))=x的解只有x=1;
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④不存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中正確的個數(shù)是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:73引用:1難度:0.3 -
3.德國著名數(shù)學家狄利克雷在數(shù)學領域成就顯著,以其名命名的函數(shù)f(x)=
被稱為狄利克雷函數(shù),其中R為實數(shù)集,Q為有理數(shù)集,則關于函數(shù)有如下四個命題:1,x∈Q0,x∈?RQ
①f(f(x))=0;
②函數(shù)f(x)是偶函數(shù);
③任取一個不為零的有理數(shù)T,f(x+T)=f(x)對任意的x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中的真命題是( ?。?/h2>發(fā)布:2024/12/22 8:0:1組卷:98引用:2難度:0.5
把好題分享給你的好友吧~~