已知雙曲線x2a2-y2b2=1(a>0,b>0)的右焦點為F,以F為圓心,a為半徑的圓與雙曲線的一條漸近線的兩個交點為A,B.若∠AFB=60°,則該雙曲線的離心率為( ?。?/h1>
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
【考點】求雙曲線的離心率.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:418引用:8難度:0.6
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點,P為x2+y2=c2與雙曲線C1的交點,且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( ?。?/h2>13發(fā)布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( ?。?/h2>32發(fā)布:2025/1/5 18:30:5組卷:227引用:3難度:0.7 -
3.設a>1,則雙曲線
的離心率e的取值范圍是( )x2a2-y2(a+1)2=1發(fā)布:2024/12/29 0:0:2組卷:794引用:17難度:0.7