我們將服從二項(xiàng)分布的隨機(jī)變量稱為二項(xiàng)隨機(jī)變量,服從正態(tài)分布的隨機(jī)變量稱為正態(tài)隨機(jī)變量.概率論中有一個(gè)重要的結(jié)論是棣莫弗一拉普拉斯極限定理,它表明,若隨機(jī)變量Y~B(n,p),當(dāng)n充分大時(shí),二項(xiàng)隨機(jī)變量Y可以由正態(tài)隨機(jī)變量X來近似,且正態(tài)隨機(jī)變量X的期望和方差與二項(xiàng)隨機(jī)變量Y的期望和方差相同.棣莫弗在1733年證明了p=12的特殊情形,1812年,拉普拉斯對(duì)一般的p進(jìn)行了證明.現(xiàn)拋擲一枚質(zhì)地均勻的硬幣100次,則利用正態(tài)分布近似估算硬幣正面向上次數(shù)超過60次的概率為( ?。?br />(附:若X~N(μ,σ2),則P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973)
p
=
1
2
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:336引用:9難度:0.8
相似題
-
1.為了了解某類工程的工期,某公司隨機(jī)選取了10個(gè)這類工程,得到如下數(shù)據(jù)(單位:天):17,23,19,21,22,21,19,17,22,19.若該類工程的工期X~N(μ,σ2)(其中μ和σ分別為樣本的平均數(shù)和標(biāo)準(zhǔn)差),由于疫情需要,要求在22天之內(nèi)完成一項(xiàng)此類工程,估計(jì)能夠在規(guī)定時(shí)間內(nèi)完成該工程的概率約為( ?。?br />附:若隨機(jī)變量X服從正態(tài)分布N(μ,σ2),則P(μ-σ<X≤μ+σ)≈0.6827,P(μ-2σ<X≤μ+2σ)≈0.9545,P(μ-3σ<X≤μ+3σ)≈0.9973.
發(fā)布:2024/12/20 17:0:3組卷:150引用:1難度:0.8 -
2.已知某種袋裝食品每袋質(zhì)量X~N(500,16),則隨機(jī)抽取10000袋這種食品,袋裝質(zhì)量在區(qū)間(492,504]的約 袋(質(zhì)量單位:g).
(附:X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6827,P(μ-2σ<X≤μ+2σ)=0.9545,P(μ-3σ<X≤μ+3σ)=0.9973).發(fā)布:2024/12/18 2:0:2組卷:120引用:2難度:0.7 -
3.公共汽車門的高度是按照確保99%以上的成年男子頭部不跟車門頂部碰撞設(shè)計(jì)的.如果某地成年男子的身高X~N(173,8)(單位:cm),則車門應(yīng)設(shè)計(jì)至少高 cm(結(jié)果精確到1cm).
參考數(shù)據(jù):若Z~N(0,1),則P(Z≤2.33)=0.99,P(Z≤3.09)=0.999,≈1.4.2發(fā)布:2024/12/20 2:30:1組卷:30引用:1難度:0.7
把好題分享給你的好友吧~~