如圖,已知橢圓的標(biāo)準(zhǔn)方程為x2a2+y2b2=1(a>b>0),斜率為k且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn).
(1)若OA+OB與a=(3k,-1)共線.
(?。┣髾E圓的離心率;
(ⅱ)設(shè)P為橢圓上任意一點(diǎn),且OP=λOA+μOB(λ,μ∈R),當(dāng)|k|≥1時(shí),求證:λ2+μ2>34.
(2)已知橢圓的面積S0=πab,當(dāng)k=1時(shí),△AOB的面積為S,求S0S的最小值.
x
2
a
2
+
y
2
b
2
OA
+
OB
a
=
(
3
k
,-
1
)
OP
=
λ
OA
+
μ
OB
3
4
S
0
S
【考點(diǎn)】橢圓與平面向量.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:19引用:2難度:0.5
相似題
-
1.在直角坐標(biāo)系xOy中,已知橢圓
的右焦點(diǎn)為F(1,0),過點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),|AB|的最小值為C:x2a2+y2b2=1(a>b>0).2
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若與A,B不共線的點(diǎn)P滿足,求△PAB面積的取值范圍.OP=λOA+(2-λ)OB發(fā)布:2024/12/29 13:30:1組卷:105引用:3難度:0.4 -
2.橢圓C:
+x2a2=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1的直線l交橢圓C于A,B兩點(diǎn),若|F1F2|=|AF2|,y2b2=2AF1,則橢圓C的離心率為( ?。?/h2>F1B發(fā)布:2024/12/6 18:30:2組卷:751引用:6難度:0.6 -
3.已知橢圓
=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,經(jīng)過F1的直線交橢圓于A,B,△ABF2的內(nèi)切圓的圓心為I,若3x2a2+y2b2+4IB+5IA=IF2,則該橢圓的離心率是( ?。?/h2>0發(fā)布:2024/11/28 2:30:1組卷:1170引用:12難度:0.5
把好題分享給你的好友吧~~