試卷征集
加入會(huì)員
操作視頻

【閱讀新知】19世紀(jì)英國(guó)著名文學(xué)家和歷史學(xué)家卡萊爾給出了一元二次方程x2+bx+c=0的幾何解法:如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、B(-b,c),以AB為直徑作⊙P.若⊙P交x軸于點(diǎn)M(m,0)、N(n,0),則m、n為方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根.
【探究新知】
(1)由勾股定理得,AM2=12+m2,BM2=c2+(-b-m)2,AB2=(1-c)2+b2
在Rt△ABM中,AM2+BM2=AB2,所以12+m2+c2+(-b-m)2=(1-c)2+b2
化簡(jiǎn)得:m2+bm+c=0.同理可得:
n2+bn+c=0
n2+bn+c=0

所以m、n為方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根.
【運(yùn)用新知】
(2)在圖2中的x軸上畫(huà)出以方程x2-4x-2=0兩根為橫坐標(biāo)的點(diǎn)M、N.
(3)已知點(diǎn)A(0,1)、B(-10,25),以AB為直徑作⊙C.判斷⊙C與x軸的位置關(guān)系,并說(shuō)明理由.
【拓展提升】
(4)在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,a)、B(-b,c),若以AB為直徑的圓與交x軸有兩個(gè)交點(diǎn)M、N,則以點(diǎn)M、N的橫坐標(biāo)為根的一元二次方程是
x2+bx+ac=0
x2+bx+ac=0

【考點(diǎn)】圓的綜合題
【答案】n2+bn+c=0;x2+bx+ac=0
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/4 7:0:9組卷:177引用:1難度:0.1
相似題
  • 1.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
    (1)求證:BE是圓O的切線;
    (2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
    (3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.

    發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1
  • 2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
    (1)求證:直線CE是圓O的切線.
    (2)如圖1,若OG=BG,BH=1,直接寫(xiě)出圓O的半徑;
    (3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長(zhǎng).

    發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1
  • 3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
    (1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
    (2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫(huà)出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說(shuō)明理由.

    發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正