當(dāng)前位置:
2023-2024學(xué)年江蘇省鹽城市東臺(tái)實(shí)驗(yàn)中學(xué)教育集團(tuán)九年級(jí)(上)段考數(shù)學(xué)試卷(10月份)>
試題詳情
【閱讀新知】19世紀(jì)英國(guó)著名文學(xué)家和歷史學(xué)家卡萊爾給出了一元二次方程x2+bx+c=0的幾何解法:如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1)、B(-b,c),以AB為直徑作⊙P.若⊙P交x軸于點(diǎn)M(m,0)、N(n,0),則m、n為方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根.
【探究新知】
(1)由勾股定理得,AM2=12+m2,BM2=c2+(-b-m)2,AB2=(1-c)2+b2.
在Rt△ABM中,AM2+BM2=AB2,所以12+m2+c2+(-b-m)2=(1-c)2+b2.
化簡(jiǎn)得:m2+bm+c=0.同理可得:n2+bn+c=0n2+bn+c=0.
所以m、n為方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根.
【運(yùn)用新知】
(2)在圖2中的x軸上畫(huà)出以方程x2-4x-2=0兩根為橫坐標(biāo)的點(diǎn)M、N.
(3)已知點(diǎn)A(0,1)、B(-10,25),以AB為直徑作⊙C.判斷⊙C與x軸的位置關(guān)系,并說(shuō)明理由.
【拓展提升】
(4)在平面直角坐標(biāo)系中,已知兩點(diǎn)A(0,a)、B(-b,c),若以AB為直徑的圓與交x軸有兩個(gè)交點(diǎn)M、N,則以點(diǎn)M、N的橫坐標(biāo)為根的一元二次方程是 x2+bx+ac=0x2+bx+ac=0.
【考點(diǎn)】圓的綜合題.
【答案】n2+bn+c=0;x2+bx+ac=0
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/4 7:0:9組卷:177引用:1難度:0.1
相似題
-
1.如圖,AB是圓O的直徑,弦CD與AB交于點(diǎn)H,∠BDC=∠CBE.
(1)求證:BE是圓O的切線;
(2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長(zhǎng);
(3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1 -
2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點(diǎn)E,直線DB與CE交于點(diǎn)H,且∠BDC=∠BCH.
(1)求證:直線CE是圓O的切線.
(2)如圖1,若OG=BG,BH=1,直接寫(xiě)出圓O的半徑;
(3)如圖2,在(2)的條件下,將射線DO繞D點(diǎn)逆時(shí)針旋轉(zhuǎn),得射線DM,DM與AB交于點(diǎn)M,與圓O及切線CF分別相交于點(diǎn)N,F(xiàn),當(dāng)GM=GD時(shí),求切線CF的長(zhǎng).發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1 -
3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點(diǎn),C是弧BD的中點(diǎn).
(1)若∠ABD=30°,求BC的長(zhǎng)和由弦BC、BD、和弧CD圍成的圖形面積;
(2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點(diǎn)P,使得PC+PD的值最小,如果存在,請(qǐng)?jiān)趥溆脠D中畫(huà)出P的位置,并求PC+PD的最小值,如果不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3