如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉(zhuǎn)α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′交CB′于點E,連接BE.易知,在旋轉(zhuǎn)過程中,△BDE為直角三角形.設(shè)BC=1,AD=x,△BDE的面積為S.
(1)當(dāng)α=30°時,求x的值.
(2)求S與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當(dāng)S=14S△ABC時,判斷⊙E與A′C的位置關(guān)系,并求相應(yīng)的tanα值.
1
4
【考點】銳角三角函數(shù)的定義;根據(jù)實際問題列二次函數(shù)關(guān)系式;勾股定理;直線與圓的位置關(guān)系;旋轉(zhuǎn)的性質(zhì);相似三角形的判定與性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/20 0:0:1組卷:4757引用:29難度:0.1