如圖,已知SA垂直于梯形ABCD所在的平面,矩形SADE的對角線交于點F,G為SB的中點,∠ABC=∠BAD=π2,SA=AB=BC=12AD=1.
(1)求證:BD∥平面AEG;
(2)求二面角C-SD-E的余弦值;
(3)在線段EG上是否存在一點H,使得BH與平面SCD所成角的大小為π6?若存在,求出GH的長;若不存在,說明理由.
∠
ABC
=∠
BAD
=
π
2
SA
=
AB
=
BC
=
1
2
AD
=
1
π
6
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:221引用:7難度:0.4
相似題
-
1.如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點.
(Ⅰ)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關系,并加以證明;
(Ⅱ)設(Ⅰ)中的直線l與圓O的另一個交點為D,且點Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E-l-C的大小為β.求證:sinθ=sinαsinβ.DQ=12CP發(fā)布:2025/1/20 8:0:1組卷:875引用:12難度:0.1 -
2.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=
.5
(1)求證:平面EBC⊥平面EBD;
(2)設M為線段EC上一點,3=EM,求二面角M-BD-E的平面角的余弦值.EC發(fā)布:2025/1/2 8:0:1組卷:557引用:6難度:0.3 -
3.如圖,四邊形ABCD為梯形,四邊形CDEF為矩形,平面ABCD⊥平面CDEF,∠BAD=∠ADC=90°,AB=AD=DE=
CD,M為AE的中點.12
(1)證明:AC∥平面MDF;
(2)求平面MDF與平面BCF的夾角的大小.發(fā)布:2025/1/2 8:0:1組卷:141引用:1難度:0.6