已知直線l:x-ky+2+k=0(k∈R).
(1)若直線l不經(jīng)過第一象限,求k的取值范圍;
(2)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標(biāo)原點(diǎn)),求S的最小值和此時(shí)直線l的方程.
【考點(diǎn)】直線的一般式方程與直線的性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:172引用:6難度:0.6
相似題
-
1.數(shù)學(xué)家歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的外心(三邊中垂線的交點(diǎn))、重心(三邊中線的交點(diǎn))、垂心(三邊高的交點(diǎn))依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( ?。?/h2>
A.x+2y-5=0 B.x-2y-5=0 C.2x+y-10=0 D.2x-y-10=0 發(fā)布:2024/11/12 21:0:2組卷:730引用:10難度:0.5 -
2.已知0<k<4直線L:kx-2y-2k+8=0和直線M:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個(gè)四邊形,則這個(gè)四邊形面積最小值時(shí)k值為( ?。?/h2>
A.2 B. 12C. 14D. 18發(fā)布:2024/12/29 2:0:1組卷:324引用:7難度:0.7 -
3.數(shù)學(xué)家歐拉于1765年在他的著作《三角形的幾何學(xué)》中首次提出定理:三角形的外心(三邊中垂線的交點(diǎn))、重心(三邊中線的交點(diǎn))、垂心(三邊高的交點(diǎn))依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線被后人稱之為三角形的歐拉線.已知△ABC的頂點(diǎn)為A(0,0),B(5,0),C(2,4),則該三角形的歐拉線方程為( )
注:重心坐標(biāo)公式為橫坐標(biāo):;縱坐標(biāo):x1+x2+x33y1+y2+y33A.2x-y-10=0 B.x-2y-5=0 C.2x+y-10=0 D.x+2y-5=0 發(fā)布:2024/10/25 1:0:1組卷:69引用:1難度:0.6