已知函數(shù)f(x)=1ax+lnx,g(x)=xeax+12-lna(e為自然對數(shù)的底數(shù)).
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)a>0時,若函數(shù)y=f(x)與y=g(x)的圖象有且僅有一個公共點.
(i)求實數(shù)a的集合;
(ii)設(shè)經(jīng)過點(b,c)有且僅有3條直線與函數(shù)y=f(x)的圖象相切,求證:當(dāng)b>e時,12(1-be)+c<f(b)<c.
f
(
x
)
=
1
ax
+
lnx
g
(
x
)
=
x
e
ax
+
1
2
-
lna
1
2
(
1
-
b
e
)
+
c
<
f
(
b
)
<
c
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:167引用:1難度:0.3
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
相關(guān)試卷