如圖,橢圓E:x2a2+y2b2=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=12,過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(1)求橢圓E的方程;
(2)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q,試探究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.
x
2
a
2
y
2
b
2
1
2
【考點(diǎn)】橢圓的焦點(diǎn)弦及焦半徑.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/13 8:0:9組卷:204引用:7難度:0.4
相似題
-
1.已知橢圓
的離心率為C:x2a2+y2b2=1(a?b>0),左焦點(diǎn)F與原點(diǎn)O的距離為1.正方形PQMN的邊PQ,MN與x軸平行,邊PN,QM與y軸平行,12.過F的直線與橢圓C交于A,B兩點(diǎn),線段AB的中垂線為l.已知直線AB的斜率為k,且k>0.P(-27,17),M(17,-27)
(1)若直線l過點(diǎn)P,求k的值;
(2)若直線l與正方形PQMN的交點(diǎn)在邊PN,QM上,l在正方形PQMN內(nèi)的線段長度為s,求的取值范圍.s|AB|發(fā)布:2024/10/12 10:0:1組卷:185引用:5難度:0.1 -
2.已知橢圓E的中心為坐標(biāo)原點(diǎn),對稱軸為x軸、y軸,且過A(-2,0),
兩點(diǎn).B(3,-32)
(1)求橢圓E的方程;
(2)點(diǎn)F是橢圓E正半軸上的焦點(diǎn),過F的直線l與橢圓E相交于C,D兩點(diǎn),過C作x軸的垂線交直線于點(diǎn)P,試問DP是否恒過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.y=955發(fā)布:2024/10/4 3:0:1組卷:37引用:1難度:0.5 -
3.已知橢圓C的標(biāo)準(zhǔn)方程為
,點(diǎn)F(2,0)是橢圓C的右焦點(diǎn),過F的直線與橢圓C相交于A,B兩點(diǎn),且線段AB的中點(diǎn)為x2a2+y2b2=1(a>b>0),則橢圓C的離心率e為( ?。?/h2>D(1,13)發(fā)布:2024/10/21 19:0:2組卷:132引用:1難度:0.5
把好題分享給你的好友吧~~