某專業(yè)技能測試分為甲、乙兩項(xiàng),每項(xiàng)測試均有兩道題,參加測試者至少共答對(duì)三道題才可獲得專業(yè)資格認(rèn)定.已知該專業(yè)技能測試允許每人多次參加,且各次測試結(jié)果相互獨(dú)立,王先生首次參加該測試時(shí),甲項(xiàng)測試中每題能答對(duì)的概率為12,乙項(xiàng)測試中每題能答對(duì)的概率為13,兩項(xiàng)測試互不影響,各題答對(duì)與否互不影響,
(1)求王先生首次參加此專業(yè)技能測試就能獲得專業(yè)資格認(rèn)定的概率;
(2)王先生在經(jīng)過一段時(shí)間的訓(xùn)練后專業(yè)技能得到提升,他在甲、乙兩項(xiàng)測試中每題能答對(duì)的概率分別為23和p0(13<p0<1),已知王先生一旦獲得該專業(yè)資格認(rèn)定就停止參加測試,否則他會(huì)繼續(xù)參加下次測試,設(shè)王先生還需參加X次該專業(yè)技能測試,若P(X≤3)≥78,求p0的取值范圍.
1
2
1
3
2
3
p
0
(
1
3
<
p
0
<
1
)
P
(
X
≤
3
)
≥
7
8
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:34引用:2難度:0.6
相似題
-
1.甲、乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12發(fā)布:2024/12/29 12:0:2組卷:245引用:6難度:0.6 -
2.小王同學(xué)進(jìn)行投籃練習(xí),若他第1球投進(jìn),則第2球投進(jìn)的概率為
;若他第1球投不進(jìn),則第2球投進(jìn)的概率為23.若他第1球投進(jìn)概率為13,他第2球投進(jìn)的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
3.某市在市民中發(fā)起了無償獻(xiàn)血活動(dòng),假設(shè)每個(gè)獻(xiàn)血者到達(dá)采血站是隨機(jī)的,并且每個(gè)獻(xiàn)血者到達(dá)采血站和其他的獻(xiàn)血者到達(dá)采血站是相互獨(dú)立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻(xiàn)血者到達(dá)采血站獻(xiàn)血,用隨機(jī)模擬的方法來估計(jì)一下,這10位獻(xiàn)血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7
相關(guān)試卷