設(shè)函數(shù)f(x)=2-a2x2+ax-2lnx(a∈R)
(I)當(dāng)a=0時(shí),求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)a>4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln2>|f(x1)-f(x2)|恒成立,求實(shí)數(shù)m 的取值范圍.
2
-
a
2
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:141引用:3難度:0.5
相似題
-
1.已知函數(shù)
,則f(x)的單調(diào)遞減區(qū)間為( ?。?/h2>f(x)=xlnx+3發(fā)布:2025/1/7 12:30:6組卷:106引用:2難度:0.9 -
2.已知函數(shù)
.f(x)=12x2-a2+1ax+lnx
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)討論函數(shù)f(x)的單調(diào)性.發(fā)布:2024/12/29 9:30:1組卷:110引用:4難度:0.5 -
3.已知函數(shù)
.f(x)=lnxx-x
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)0<t<1,求f(x)在區(qū)間上的最小值.[t,1t]發(fā)布:2024/12/29 12:0:2組卷:88引用:2難度:0.5