設(shè)函數(shù)f(x)=(1+x)α的定義域是[-1,+∞),其中常數(shù)α>0.
(1)若α>1,求y=f(x)的過原點的切線方程.
(2)當(dāng)α>2時,求最大實數(shù)A,使不等式f(x)>1+αx+Ax2對x>0恒成立.
(3)證明當(dāng)α>1時,對任何n∈N*,有1<1nk=2n+1∑(k-1k)α+αk)<α.
1
n
k
=
2
n
+
1
∑
k
-
1
k
α
k
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:22引用:2難度:0.1
相似題
-
1.設(shè)函數(shù)f(x)=x(ex+ae-x)的導(dǎo)函數(shù)為f′(x),若f′(x)是奇函數(shù),則曲線y=f(x)在點(1,f(1))處切線的斜率為( ?。?/h2>
發(fā)布:2024/12/14 4:0:2組卷:31引用:3難度:0.6 -
2.函數(shù)f(x)=cosx-
的圖象的切線斜率可能為( ?。?/h2>1x發(fā)布:2024/12/16 11:30:4組卷:204引用:6難度:0.7 -
3.函數(shù)y=f(x)在P(1,f(1))處的切線如圖所示,則f(1)+f′(1)=( ?。?/h2>
發(fā)布:2024/12/15 14:30:2組卷:1156引用:10難度:0.7
把好題分享給你的好友吧~~