已知Q為雙曲線x2a2-y2b2=1(a>0,b>0)的右頂點,M為雙曲線右支上一點,若點M關(guān)于雙曲線中心O的對稱點為N,設(shè)直線QM,QN的傾斜角分別為α,β且tanαtanβ=14,則雙曲線的漸近線方程為( ?。?/h1>
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
tanαtanβ
=
1
4
【考點】求雙曲線的漸近線方程.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:337引用:3難度:0.6
相似題
-
1.已知拋物線y2=20x的焦點與雙曲線
的一個焦點重合,且拋物線的準(zhǔn)線被雙曲線截得的線段長為x2a2-y2b2=1(a>0,b>0),該雙曲線的漸近線方程為( ?。?/h2>92發(fā)布:2024/12/8 20:0:1組卷:42引用:2難度:0.6 -
2.已知雙曲線
與C1:x2+y2m=1(m≠0)共焦點,則C1的漸近線方程為( ?。?/h2>C2:x22-y22=1發(fā)布:2024/12/29 9:30:1組卷:76引用:2難度:0.8 -
3.雙曲線
的漸近線方程為( )x22-y28=1發(fā)布:2024/12/31 22:0:3組卷:48引用:2難度:0.7
把好題分享給你的好友吧~~