已知a<0,函數(shù)f(x)=acosx+1+sinx+1-sinx,其中x∈[-π2,π2].
(1)設(shè)t=1+sinx+1-sinx,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對區(qū)間[-π2,π2]內(nèi)的任意x1,x2,總有|f(x1)-f(x2)|≤1,求實數(shù)a的取值范圍.
1
+
sinx
1
-
sinx
π
2
π
2
1
+
sinx
1
-
sinx
π
2
π
2
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:577引用:9難度:0.3
相似題
-
1.設(shè)函數(shù)f(x)=
sinxcosx+cos2x+a3
(1)寫出函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(2)當(dāng)x∈[,-π6]時,函數(shù)f(x)的最大值與最小值的和為π3,求不等式f(x)>1的解集.32發(fā)布:2024/12/29 12:30:1組卷:431引用:4難度:0.6 -
2.若函數(shù)
,f(x)=3sinx-cosx,則函數(shù)f(x)值域為( ?。?/h2>x∈[-π2,π2]發(fā)布:2024/12/29 10:0:1組卷:53引用:3難度:0.7 -
3.若函數(shù)
(ω>0)在(f(x)=sin(ωx+π6),-π4)有最大值無最小值,則ω的取值范圍是( ?。?/h2>π4發(fā)布:2024/12/29 6:0:1組卷:225引用:3難度:0.7
相關(guān)試卷