定義:若兩個函數(shù)的圖象關于某一點Q中心對稱,則稱這兩個函數(shù)關于點Q互為“對稱函數(shù)”.例如,函數(shù)y=x2與y=-x2關于原點O互為“對稱函數(shù)”.
(1)函數(shù)y=-x+1關于原點O的“對稱函數(shù)”的函數(shù)解析式為 y=-x-1y=-x-1,函數(shù)y=(x-2)2-1關于原點O的“對稱函數(shù)”的函數(shù)解析式為 y=-(x-2)2-1y=-(x-2)2-1;
(2)已知函數(shù)y=x2-2x與函數(shù)G關于點Q(0,1)互為“對稱函數(shù)”,若函數(shù)y=x2-2x與函數(shù)G的函數(shù)值y都隨自變量x的增大而減小,求x的取值范圍;
(3)已知點A(0,1),點B(4,1),點C(2,0),二次函數(shù)y=ax2-2ax-3a(a>0),與函數(shù)N關于點C互為“對稱函數(shù)”,將二次函數(shù)y=ax2-2ax-3a(a>0)與函數(shù)N的圖象組成的圖形記為W,若圖形W與線段AB恰有2個公共點,直接寫出a的取值范圍.
【考點】二次函數(shù)綜合題.
【答案】y=-x-1;y=-(x-2)2-1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/19 3:0:0組卷:662引用:3難度:0.1
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3613引用:36難度:0.4 -
2.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( ?。?/h2>5發(fā)布:2024/12/26 1:30:3組卷:2654引用:7難度:0.7
把好題分享給你的好友吧~~